科技diy产品_江苏科技diy产品哪家好_推荐信息放心选择
2018-06-14 00:10:47
七色光,太阳光经过三棱镜后形成按红、橙、黄、绿、蓝、靛、紫次序连续分布的彩色光谱。物体的颜色是由于其反射光线的原因,如果你看到的物体是红色的那么这个物体就反射红光;其他颜色的光都被它吸收了(可见光由七
七色光科技diy产品,太阳光经过三棱镜后形成按红、橙、黄、绿、蓝、靛、紫次序连续分布的彩色光谱科技diy。
物体的颜色是由于其反射光线的原因,如果你看到的物体是红色的那么这个物体就反射红光;其他颜色的光都被它吸收了(可见光由七种颜色的光复合而成 它们是红、橙、黄、绿、蓝、靛、紫光;一般认为是红、橙、黄、绿、青、蓝、紫光),光的颜色不同主要是因为他们的波长不同,可见光的波长范围大概是380~760nm;即只有380~760nm的光才能刺激你的眼睛,让眼睛产生“视觉”,然后你的大脑就会对这些视觉刺激产生反映,并告诉所谓的“颜色”到底是“红色”还是“绿色”;通常情况下(不是色1盲或色弱等情况)让你的大脑产生“红色”刺激的光波长大概是620~760nm,而让你的大脑产生“绿色”的光波长大概是520~560nm。
皮带传动亦称“带传动”。机械传动的一种。由一根或几根皮带紧套在两个轮子(称为“皮带轮”)上组成儿童科技diy。两轮分别装在主动轴和从动轴上。利用皮带与两轮间的摩擦,以传递运动和动力。
皮带传动是用张紧的(环形的)皮带,套在两根传动轴的皮带轮上,它依靠皮带和皮带轮张紧时产生的摩擦力,将一轴的动力传给另一轴。皮带转动可用于两轴(工作机与动力机)之间大距离传动。由于皮带有弹性,可以缓和冲击、减少振动,传动平稳科技diy体验馆,但不能保持严格的传动比(主动轮每分钟的转数对从动轮每分钟转数的比值)。传动件遇到障碍或超载时,皮带会在皮带轮上打滑,因此可防止机件损坏。皮带传动简单易行,成本低,保养维护也简单,还便于拆换。但于皮带在皮带轮上打滑,所以皮带传动的机械效率低,而且皮带本身耐久性也较差,使用久了会逐渐伸长,因此应随时调整.
滚摆特点
1.单摆运动过程中,高度越低,速度越大,与此对应的重力势能越小,动能越大。反之,高度越高,速度越 小,相应的重力势能越大,动能越小。
2.麦克斯韦滚摆下降时,高度越低,重力势能越小,转动速度越大,转动动能越大;滚摆上升时,高度越高,重力势能越大,转动速度越小,转动动能越小。
3. 在单摆和滚摆的运动中,当高度降低时,物体的重力势能减小,动能增大,即重力势能转化为动能;反之,当高度增大时,物体的动能减小重力势能增大,动能转化为重力势能。
压路机又称压土机,是一种修路的设备。压路机在工程机械中属于道路设备的范畴,广泛用于高等级公路、铁路、机场跑道、大坝、体育场等大型工程项目的填方压实作业,可以碾压沙性、半粘性及粘性土壤、路基稳定土及沥青混凝土路面层。压路机以机械本身的重力作用,适用于各种压实作业,使被碾压层产生永1久变形而密实。压路机又分钢轮式和轮胎式两类。
竹蜻蜓是我国古代一个很精妙的小发明,主要作为儿童玩具。玩时,双手一搓,然后手一松,竹蜻蜓就会飞上天空,旋转一会儿后,才会落下来。这种简单而神奇的玩具,曾令西方传教士惊叹不已,将其称为“中国螺旋”。
竹蜻蜓的制作方法:
(1)把纸片剪下来,翻过来,使背面朝上,在两边涂上胶水。 (2)沿虚线把一侧折过来粘好。 (3)再折另一侧,粘好。 (4)用针扎两个小圆孔,准备穿竹条。 (5)沿中心斜虚线把一侧向上折起大约20度。 (6)把两根细竹条分别插入两个小孔,并用胶粘住,下面用纸条把两根竹条缠在一起,用胶粘住。 (7)胶干后,用两手搓竹条,叶片旋转。向下方吹风。这时一松手,它便可以飞起来了
电磁铁原理
当在通电螺线管内部插入铁芯后,铁芯被通电螺线管的磁场磁化。磁化后的铁芯也变成了一个磁体,这样由电磁铁于两个磁场互相叠加,从而使螺线管的磁性大大增强。为了使电磁铁的磁性更强,通常将铁芯制成蹄形。但要注意蹄形铁芯上线圈的绕向相反,一边顺时针,另一边必须逆时针。如果绕向相同,两线圈对铁芯的磁化作用将相互抵消,使铁芯不显磁性。另外,电磁铁的铁芯用软铁制做,而不能用钢制做。否则钢一旦被磁化后,将长期保持磁性而不能退磁,则其磁性的强弱就不能用电流的大小来控制,而失去电磁铁应有的优点。
电磁铁是可以通电流来产生磁力的器件,属非长期磁铁,可以很容易地将其磁性启动或是消除。例如:大型起重机利用电磁铁将废弃车辆抬起。
当电流通过导线时,会在导线的周围产生磁场。应用这性质,将电流通过螺线管时,则会在螺线管之内制成均匀磁场。假设在螺线管的中心置入铁磁性物质,则此铁磁性物质会被磁化,而且会大大增强磁场。
一般而言,电磁铁所产生的磁场与电流大小、线圈圈数及中心的铁磁体有关。在设计电磁铁时,会注重线圈的分布和铁磁体的选择,并利用电流大小来控制磁场。由于线圈的材料具有电阻,这限制了电磁铁所能产生的磁场大小,但随着超导体的发现与应用,将有机会超越现有的限制。
长期